一、如何选择合适的排序算法

image.png

如果对小规模数据进行排序,可以选择时间复杂度是 O(n2) 的算法;如果对大规模数据进行排序,时间复杂度是 O(nlogn) 的算法更加高效。所以,为了兼顾任意规模数据的排序,一般都会首选时间复杂度是 O(nlogn) 的排序算法来实现排序函数。

O(n2) 时间复杂度出现的主要原因还是因为我们分区点选得不够合理。

最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。

1.1 三数取中法

我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。

1.2 随机法

随机法就是每次从要排序的区间中,随机选择一个元素作为分区点。这种方法并不能保证每次分区点都选的比较好,但是从概率的角度来看,也不大可能会出现每次分区点都选得很差的情况,所以平均情况下,这样选的分区点是比较好的。

二、小结

我们大部分排序函数都是采用 O(nlogn) 排序算法来实现,但是为了尽可能地提高性能,会做很多优化。

快速排序的一些优化策略,比如合理选择分区点、避免递归太深等等。